(7 pages)
MAY 2011
U/ID 32355/UCME

Time : Three hours
Maximum : 100 marks
PART A - ($10 \times 3=30$ marks $)$
Answer any TEN questions.

1. If H is a subgroup of G and N is a normal subgroup of G, show that $H \cap N$ is a normal subgroup of H.
G என்ற குலத்தில் H உட்குலம், N நேர்மை உட்குலம் எனில் $H \cap N, H$-ல் நேர்மம உட்குலம் என நிரூபி.
2. Define automorphism of a group. Give an example. குலத்தின் தன் ஒப்புமையை வரையறுத்து எடுத்துக்காட்டு தருக.
3. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ where $a d \neq 0$ under matrix multiplication. Let $N=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\right\}$ prove that N is a normal subgroup of G.
$G=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, a d \neq 0\right\}$ அணிகளின் பெருக்கலைப்
பொறுத்து G ஓரு குலம் மற்றும் $N=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\right\}$ எனில் N
ஓரு நேர்மை உட்குலம் என நிரூபி.
4. Find the orbit and cycles of $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2\end{array}\right)$.
$\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2\end{array}\right)$-ன் ஒழுக்கு மற்றும் சுழல்களளக் காண்க.
5. Determine the conjugacy class of $(1,2)$ in S_{3}.
S_{3}-ல் உள்ள $(1,2)$-ன் இணையிய வகுப்பபக் காண்க.
6. Define a division ring. Give an example.

வகுத்தல் வளையம் - வரரயறு. எடுத்துக்காட்டு ஒன்றும் தருக.
7. Find all ideals of the ring $\left(z_{6},+_{6},{ }_{6}\right)$.
$\left(z_{6},+{ }_{6},{ }_{6}\right)$ என்ற வளையத்தின் எல்லா சீர்மங்களையும் கண்டுபிடி.
8. Prove that $(1,0,0),(1,-1,0),(0,0,2)$ are linearly independent in $R^{(3)}$ where R is the set of reals.
R என்பது மெய்யெண்களின் கணம் $R^{(3)}$-ல் ($1,0,0$), $(1,-1,0)$ மற்றும் $(0,0,2)$ என்பது நோியல் சார்பற்றவை என நிறுவுக.
9. Define inner product space. Give an example.

உள் பெருக்கல் வெளியின் வரையறை தருக.
எடுத்துக்காட்டும் தருக.
10. If V is finite dimensional over f and if $T \in A(V)$ is singular, then there exist an $S \neq 0$ in $A(V)$ such that $S T=T S=0$.
V என்பது முடிவுறு அடிமாணம் உடையது மற்றும் $T \in A(V)$ மற்றும் ஒருமையானது எனில் $S T=T S=0$ என்று அமையுமாறு $A(V)$-ல் S ஐக் காண முடியும் என்று நிரூபி.
11. If $T, S \in A(V)$ and if S is regular, prove that T and $S T S^{-1}$ have the same minimal polynomial.
$T, S \in A(V) \quad$ மற்றும் $\quad S \quad$ ஒழுங்குடையது எனில்
T மற்றும் $S T S^{-1}$ என்பது ஒரே சிறும பல்லுறுப்புக்
கோவை உடையன என நிறுவுக.
3 U/ID 32355/UCME
12. Let $T \in A\left(R^{2}\right)$ find the matrix of T defined by $T(x, y)=(2 x+3 y, 4 x-y)$ with respect to the basis $(1,0)$ and $(0,1)$.
$T \in A\left(R^{2}\right) \quad$ மற்றும் $\quad T(x, y)=(2 x+3 y, 4 x-y)$. $(1,0)$ மற்றும் $(0,1)$ உடைய அடிமாணத்தைப் பொறுத்து T-ன் அணியைக் காண்க.

PART B- ($5 \times 6=30$ marks $)$
Answer any FIVE questions.
13. If G is a finite group and N is a normal subgroup of G, prove that $O\left(\frac{G}{N}\right)=\frac{O(G)}{O(N)}$.
G என்ற முடிவுறு குலத்தின் ஒரு நேர்மை உட்குலம் N எனில் $O\left(\frac{G}{N}\right)=\frac{O(G)}{O(N)}$ என்று நிறறவுக.
14. Show that Kernel of a group homomorphism is a normal subgroup.
ஒரு குல செயலொப்புமையின் உட்கரு ஒரு நேர்மை உட்குலமென நிறுவுக.
15. Let ϕ be a homomorphism of G onto \bar{G} with Kernel K. Let \bar{N} be a normal subgroup of $\bar{G} * N=\{x \in G / \phi(x) \in \bar{N}\}$. Prove that $\frac{G}{N} \approx \frac{\bar{G}}{\bar{N}}$.
$\phi: G \rightarrow \bar{G}$ குல ஒப்புமை மற்றும் K அதன் உட்கரு. \bar{N} என்பது \bar{G} ன் நேர்மை உட்குலம். மேலும்

$$
N=\{x \in G / \phi(x) \in \bar{N}\}
$$

எனில் $\frac{G}{N} \approx \frac{\bar{G}}{\bar{N}}$ என்று நிறுவுக.
16. Prove that $N(a)$ is a subgroup of G.
$N(\alpha)-G$ व் உட்குலம் என நிரூபி.
17. Let R be a commutative ring with unit element and M an ideal of R. If $\frac{R}{M}$ is a field prove that M is a maximal ideal of R.
R ஓரு அலகு உடைய பரிமாற்று வளையம். M அதன் சீர்மம் ஆகும். $\frac{R}{M}$ ஒரு களம் எனில் M ஒரு மீப்பெரு சீர்மம் என்று நிரூபி.
18. Let R be a Euclidean ring. Suppose that for $a, b, c \in R, a / b c$ but $(a, b)=1$. Then prove that a / c.
R என்பது யூக்லிடியன் வளையம். $a, b, c \in R$-ல் $a / b c$ மற்றும் $(a, b)=1$ எனில் a / c என நிரூபி.
19. Prove that any two finite dimensional vector spaces over F of the same dimension are isomorphic.

முடிவுறு அடிமாணம் கொண்ட வெக்டர் வெளியில்
சமமான அடிமாணம் கொண்டவை எனில் அவை
ஓப்புமை உடையன என நிரூபி.
PART C $-(4 \times 10=40$ marks $)$
Answer any FOUR questions.
20. State and prove Cayley's theorem.

கெய்லியின் தேற்றத்தை கூறி நிறுவுக.
21. Derive class equation.

வகுப்புச் சமன்பாட்டை வருவிக்க.
22. Show that for a prime $p,\left(2_{p},+_{p},{ }_{p}\right)$ is a field.
p ஒரு பகா எண் எனில் $\left(2_{p},+_{p},{ }_{p}\right)$ ஒரு களமென நிறுவுக.
23. State and prove unique factorization theorem on Euclidean ring.

யூக்லிடியன் வளையத்தில் ஒரே காரணி தேற்றத்தை கூறி நிறுவுக.
24. If V is a finite-dimensional inner product space, prove that V has an orthonormal basis.
V என்பது முடிவுறு அடிமாணம் உடைய ஒரு உள்பெருக்கல் வெளி V க்கு ஓரு நெறிம செங்குத்து அலகு படிமாணம் உள்ளது என நிறுவுக.
25. If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F prove that T satisfies a polynomial of degree n over F.
V என்பது F-ல் முடிவுறு அடிமாணம் உடையது $T \in A(V)$-ன் எல்லா சிறப்பு மூலங்களும் F-ல் உள்ளன எனில் T ஆனது F-ல் n படி உடைய பல்லுறுப்புக் கோவையை நிறைவு செய்யும் என்று நிரூபி.

